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On Faraday waves 

By JOHN MILES 
Institute of Geophysics and Planetary Physics, University of California, San Diego, 

La Jolla, CA 92093-0225, USA 

(Received 3 March 1992 and in revised form 21 September 1992) 

The standing waves of frequency w and wavenumber k that are induced on the 
surface of a liquid of depth d that is subjected to the vertical displacement a, cos 2wt 
are determined on the assumptions that :  the effects of lateral boundaries are 
negligible; E = ka, tanh kd < 1 and 0 < E -  6 = 0(63),  where 6 is the linear damping 
ratio of a free wave of frequency w ;  the waves form a square pattern (which 
follows from observation). This problem, which goes back to Faraday (1831), has 
recently been treated by Ezerskii et al. (1986) and Milner (1991) in the limit of deep- 
water capillary waves ( k d , k l ,  % 1, where 1, is the capillary length). Ezerskii et al. 
show that the square pattern is unstable for sufficiently large E -  6, and Milner shows 
that nonlinear damping is necessary for equilibration of the square pattern. The 
present formulation extends those of Ezerskii et al. and Milner to capillary-gravit,y 
waves and finite depth and incorporates third-order parametric forcing, which is 
neglected in these earlier formulations but is comparable with third-order damp- 
ing. There are quantitative differences in the resulting evolution equations (for 
kd ,  k l ,  >> l), which appear to reflect errors in the earlier work. 

These formulations determine a locus of admissible waves, but they do not select 
a particular wave. The hypothesis that the selection process maximizes the energy- 
transfer rate to the Faraday wave selects the maximum of the resonance curve in a 
frequency-amplitude plane. 

1. Introduction 

displacement 
I consider here standing waves in a container that is subjected to the vertical 

(1.1) 7. = a, cos 2wt 

on the preliminary assumptions that 

kb 9 1, 0 < E = ka,tanhkd < 1 ,  6 = O ( E ) ,  w - w k  = O(sw) ,  ( 1 . 2 ~ - d )  

where k is the wavenumber, b is the (minimum) breadth of the container, d is the 
depth, 6 is the linear damping ratio of the wave, 

w i  = (gk  + Tk3) tanh kd = gk( 1 + k212,) tanh kd,  ( 1 . 3 )  

T is the kinematic surface tension, and 1, is the capillary length. The assumption 
kb % 1 permits the neglect of lateral boundaries. 

This problem goes back to Faraday (1831), who discovered that the resulting 
waves (Faraday waves) have the frequency w and a square pattern (the superposition 
of two standing waves of equal, orthogonal wavenumbers) ; see Miles & Henderson 
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(1990, hereinafter referred to as MH), for a review. Both observation and theory 
confirm that the free surface remains plane if E is sufficiently small and that Faraday 
waves appear if E exceeds a threshold for which theory yields E = 6. (Comparison with 
the observed threshold is impeded by the uncertainty in 6, but agreement is typically 
within a factor of 2 ; see Milner 1991 .) This prediction holds for any regular pattern 
(e.g. rolls, squares, or hexagons), the selection of which (for kb & 1) presumably 
depends on nonlinear effects. Faraday’s observation of a square pattern has been 
confirmed by Rayleigh (1883), Ezerskii et ul. (1986), Douady & Fauve (1988), and 
Tufillaro, Ramshankar & Gollub (1989) for sufficiently small supercriticality 
(0 < E - - S  < l ) ,  and Milner (1991) offers theoretical support for this selection. The 
square pattern loses stability, and may become chaotic, for sufficiently large e-6. 

The threshold E = 6 represents a balance between linear parametric forcing and 
linear damping ; however, as first recognized by Milner (1991), nonlinear (third-order) 
damping is necessary for a stationary pattern, which is achieved for 0 < e- 6 = 0(S3). 
This suggests that third-order parametric forcing, which Milner neglects, also may be 
significant. 

The present investigation was stimulated by (what appear to be) errors or 
omissions in the formulations of Erzerskii et al. (1986) and Milner (1991). It is less 
comprehensive than either of these formulations in seeking only a description of 
Faraday waves for 0 < s-6 = O ( P )  and eschewing a description of the instability of 
these waves for E - - S  9 S3, but it goes beyond them in treating finite depth and 
capillary-gravity waves (arbitrary led and k1, us. kd, kl, 9 1 in their analyses) and in 
incorporating third-order forcing. Ezerskii et al. posit, without derivation (‘we.. . 
make use of [Zakharov’s] Hamiltonian description of the nonlinear interaction of 
capillary-gravity waves’), a set of evolution equations for the slowly varying (in 
both space and time), complex amplitudes of four plane waves of equal wavenumber 
for kd,  k l ,  % 1 .  These equations differ quantitatively from those of the present 
formulation in the special case of a square pattern (see Appendix C). Milner (1991) 
obtains evolution equations for the slowly varying amplitudes of an arbitrary set of 
plane waves for k d , k l ,  9 1 ,  but his results for a square pattern also differ 
quantitatively from those of the present formulation (see Appendix D). 

Against this background, I proceed as follows. In $2, T pose a normal-mode 
expansion of the free-surface displacement that comprises the dominant mode @ l ( x ) ,  
which describes the square pattern, and those secondary modes $.,(x) for which 
($: +,) $; 0 (( ) denotes a spatial average). In  $3, I use these modes as the basis of a 
Lagrangian formulation, in which the amplitudes of the $n are slowly varying 
sinusoids with carrier frequency w for the dominant mode and 2w for the secondary 
modes. The elimination of the secondary amplitudes and averaging over the period 
2x10 then yields an average Lagrangian for the quadrature amplitudes of the 
envelope of the square pattern. In $4, I construct an average dissipation function 
that incorporates linear and third-order damping, and in $ 5  I combine the results of 
$Q3 and 4 to obtain the evolution equations for the envelope. I then show that 
stationary states (corresponding to the stable fixed points of the evolution equations) 
other than the plane surface can exist only if 0 < E -  S = O(S3),  introduce action-angle 
variables, and eliminate the angle to obtain a Landau equation for the action. (This 
reduction is equivalent to  a centre-manifold projection.) In $6,  I consider the 
resonance curve (the locus of stable fixed points) of this action equation in a 
frequency-energy plane and establish its bifurcation structure. It then remains to fix 
the location of the Faraday wave on this resonance curve. 

In $4, I show that limit cycles are impossible in the two-dimensional phase plane 



On Faraday waves 673 

of the envelope and hence, from the Poincar&Bendixson theorem, that every 
solution of the evolution equations must terminate on a stable fixed point ;t however, 
the present formulation does not select a particular fixed point and therefore leaves 
the amplitude of the Faraday wave undetermined. Milner (1991) constructs a 
Liapunov functional that vanishes for the null solution and assumes that the 
amplitude of the Faradmy wave is selected by the requirement that this functional 
have the deepest possible minimum, but, in my view, his Liapunov functional is 
improper for the Faraday waves (see Appendix E). A more plausible hypothesis, it 
appears to me, is that the selection process maximizes the energy transfer to the 
Faraday wave, which criterion selects the maximum of the resonance curve. The 
corresponding r.m.s. (averaged over both space and time), free-surface displacement 
is given by 

(q2 ) i  = [z (s)r k-l tanh kd,  

where y and P are measures of third-order damping and forcing, respectively, and are 

Following Milner (1991), I calculate y (Appendix A) on the assumption that 
boundary-layer damping is negligible. This requires kd % 1 and an uncontaminated 
free surface, as in the experiments of Tufillaro et al. (1989) ; otherwise, y may have 
to be determined experimentally. 

O ( 4 .  

2. Normal modes 

of the moving container in the form 
Following MH, 92.1, we pose the free-surface displacement in the reference frame 

Y(X, t )  = r n ( t )  $n(X  ; k n ) ,  (2.1) 

where the $rn constitute a complete set of normal modes, k ,  are the corresponding 
wave numbers, qn are the corresponding generalized coordinates, and repeated 
dummy indices are summed over the participating modes except as noted. The 
participating 4, are determined by 

(2.2) (V2 + k 2 )  $ = 0, 

(2.3a, b) 

where a,, is the Kronecker delta, ( ) signifies an average over x, Clln measures the 
coupling between the primary mode $l and the secondary mode $n, and $o = 1 is 
excluded from (2.1) by conservation of mass. 

The square pattern is described by the primary mode 

ykl = coskx+cosky (k, = k ) .  (2.4) 

The corresponding secondary modes, selected by (2.3b), are (we choose n = k i / k 2 )  

$2 = 2 cos kx cos ky ( k ,  = 2/2k), $4 = cos 2kx + cos 2ky  ( k ,  = 2k). 
(2.5a, b) 

t The instability of the regular pattern for sufficiently large e-8 is a consequence of spatial 
modulation, which is suppressed in the present formulation. 
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3 Average Lagrangian 
The quartic truncation of the Lagrangian for the motion described by (2.1) is 

(MH, §2) 

L = %am, a n  + almn 72 + i a j i m n  7j 7l) h 6 n  
-!dSmn(g + 20 + T%) -iTb;.lmn 7j 711 7m v n ,  (3.1) 

where the fluid density has been factored out, g and zo are the gravitational and 
imposed accelerations, T is the kinematic surface tension, 

a, = (k, tanh k ,  d) - l ,  ( 3 . 2 ~ )  

a l m n  - - "trim = C,mn[1 +t(+k&-k;)amaa,I ,  (3.2b) 

a1111 = B C ? l n 4 a n  k”,2a1($?(v$1)2>, d1ni = ((V1)4), ( 3 * 2 ~ ,  d )  
C,,, is defined by (2.3b), and (3.2c, d )  anticipate that the quartic terms in (3.1) are 
significant in the present approximation only for j = I = m = n = 1. 

Proceeding as in Miles (1984) and MH, $3, we pose the slowly varying amplitude 
of the primary mode in the form 

vl = 1@(7)cos~t+q(7)sinwt], 7 = swt, (3.3u, b )  

where 1 = 2 s k 1  tanh kd ,  8 = kuo tanh kd. (3.4a, b)  

Anticipating that 7, = O(s)  for the secondary modes and invoking Hamilton’s 
principle, we obtain 

where 

is the square of the natural frequency of the nth mode, and, here and subsequently, 
an error factor of 1 +O(B)  is implicit; n is not summed in ( 3 4 ,  (3.6) and the remaining 
equations in this section. The required solution of (3.5) for qn, regarded as forced by 
71, (3.3), is given by 

W: = (gk, + Tki)  tanh Fc, d = (g/a,) (1 + k i  Z i )  (3.6) 

7, = ( Z 2 / ~ l ) ( A n ~ ~ ~ 2 ~ t + B , s i n 2 w t + C , )  (n  > l) ,  (3.7) 

4 k  tanh kd 1 +nA2 
l + A 2  ’ 

on = - K,, K, ~ A = kl,. 
k ,  tanh k ,  d 

(3.9 a*) 

The hypothesis that the primary mode dominates the secondary modes fails in the 
neighbourhood of 52, = 0 owing to the resonance between modes 1 and 4 (k4 = 2k, 
and wq = 214, corresponding to Wilton’s ripples), which we exclude. The denominator 
Qz is positive-definite, whence resonance between modes 1 and 2 is impossible. 

Substituting zo, yl and 7, from (1 .1)’  (3.3) and (3.7) into (3.1), averaging L over a 
2n: interval of wt, invoking (3.4), and evaluating the modal coefficients a,, . . . , (3.2), 
for the $n of (2.4) and (2.5), we obtain the average Lagrangian in the form 

( L )  = a0 1 2 W 2 1  [z(ljq-Pa, +H@> q)1, (3 .10)  

where the dots now imply differentiation with respect to the slow time 7, 

H = t(P2 - q2) + p ( p 4  - 4 4 )  + @(p2 + 42) + gyp2 + q2y (3.11) 
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FIGURE 1. The scaling parameter C (3.13) for d/Z, = .$, 4, $, 1 and 2. The steep rise of C on the left 
announces internal resonance between the primary wave and its second harmonic (Wilton's 
ripples). The asymptotic (U*? a) value of C is (33-22/2)/16 = 1.89. 

kl* 

is a Hamiltonian for the slowly varying amplitudes, 

p = ((02- (03/2€(02 (3.12) 

is a measure of the frequency offset from (linear) resonance, 

1 T4 (1  +T2)' (2X-3T2)' ( 3 - T 2 ) 2  
2 K 2  8 K 4  

- (3.13) c = L + L f J - L p + L ? g p + - - +  - 

4Q2 18524 4 2  2 16 

(see figure I )  is a measure of the nonlinear interactions (Miles 1992), 

(3.14) 

(see figure 2 )  is a measure of the parametric excitation of the secondary modes, and 

P - ( Z S - 3 P )  P+ ( 3 -  P )  (1 +!P) -- 
E 4 Q2 4K4 Q4 

1/2 tanh,kd A2 

tanh d2kd ' 1 +A2' 
T 3 tanhkd, g = - X -  (3.15 a-c) 

The retention of L$(p4 - q4) in H is, at  first sight, inconsistent with the implicit neglect 
of other O(s) terms therein, e.g. higher-order inertial terms; however, it proves to be 
directly comparable with nonlinear damping in the neighbourhood of the Faraday- 
wave threshold (see $5). We remark that (L) and H have the forms (3.10) and (3.11) 
for any regular pattern (e.g. rolls, squares, or hexagons), with C and P depending on 
the particular pattern. Rolls are considered in Appendix B. 

The evolution equations implied by the requirement (Hamilton's principle) that 
<L) be stationary with respect to independent variations of p and q have the 
canonical form 

p = --aH/aq, (1 = aHlap. (3.16a, b )  
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kl, 
FIGURE 2. The parameter P (3.14) for d/Z, = 4, i, g, 1 and 2. The asymptotic (k l ,  m )  value of 

P is +-id2 = -0.23. 

4. Dissipation 
We now posit a dissipation function D(p ,  q )  such that (3.16a, b )  are replaced by 

(4.1 a, b )  

It follows from symmetry that D must have the form (cf. (3.11)) 

D = +a(pZ+q2)+- :Y(P2+q2)2> (4-2) 

where (by hypothesis) a, y > 0, a = 0 ( 6 / e ) ,  y = 0(6), and 6 is the linear damping 
ratio. The logarithmic contraction ratio for a closed orbit in the p , p  phase plane is 

in consequence of which limit cycles are impossible. It then follows from the 
Poincari-Bendixson theorem that every solution of (4.1) must terminate on a stable 
fixed point. 

We relate the parameters a and y (which are independent of the excitation) to 
those of the dissipation function for the free motion through the mean energy 
equation, 

(4.4) 

in which the energy E and the Rayleigh dissipation function F may be calculated (in 
the present approximation) for the undamped motion described by (2.1), (3.3) and 
(3.7). Proceeding as in $ 3  (in particular, the fluid density is factored out), we obtain 
(cf. (3.1) and (3.11)) 



= a, z2w2 [-(+) 1 w2+02 (p2 + 42) +f&2 +q")"], 
2 2 E 0  

(4.5b) 

where 6 is given by (3.13) with the sign of 
function may be developed in the corresponding forms (see, e.g. Appendix A) 

therein reversed. The mean dissipation 

(F) = ( ( 'mnfn +fimn rl +f j lmn ~j ~ t )  i m  i n )  ( 4 . 6 ~ )  
= ;a,z2w3[(S/e) (p2+q2)+r(p2+Q2)2], (4.6b) 

in which T =  O(S). Substituting (4.56) and (4.6b) into (4.4), invoking T = cut,  
w; = 02[1 + O ( E ) ] ,  and r, 6 = O ( E ) ,  and expanding in powers of p 2 + q 2 ,  we obtain 

The corresponding result implied by (4.1), (4.2) and the Hamiltonian for the free 

(4.8) H = $(p2 + q2)  + iC(p2 + q2)', motion (cf. (3.11)), 

is (4.9) 

which may be compared with (4.7) to obtain 

a = SIE ,  = r-$6, (4.10a, b)  

It then remains to determine S and r through calculation, as in Appendix A, or 
experiment. 

Viscosity also may alter the resonant frequency. In  particular, if S is derived 
entirely from Stokes-like boundary layers a t  the bottom and free surface, w1 is 
reduced by a factor of 1-6 from the value given by (3.6). 

5. Action-angle reduction 
Substituting (3.11) and (4.2) into (4.1), we obtain the evolution equations 

B = - [a+ Y ( P 2  + Q2)1P + (1 + 2 W )  Q - [P+ C(P2 +a2)] q (5.1a) 

and Q = - [a + y(lp2+q2)] q + (1 + 2Pp2)p + la+ C(pZ+ p2)]p.  (5.1 b)  

The fixed points of (5.1) correspond to either the null solution p = q = 0, which 
is stable (with respect to small disturbances) if 01 > 1 and stable/unstable for 
1/31 2 (1 -a2)+ if 0 < a < 1, or Faraday waves with the threshold a = 1 and /3 = 0 
and a maximum at z - - P = 1 - "  (a< 1 ) .  

p 2 + q  - c ?-p 

Invoking (5.2) and y ,P  = O(S) in (5.1), we find that the remaining terms, which 
represent damping and parametric forcing, can balance (to yield #I = q = 0) if and 
only if 1 - a = O(S2). 

Guided by these considerations, we rescale and introduce the action-angle 
variables (which are canonical variables for the rescaled Hamiltonian) d(+) and O(?) 
according to 

(BsgnC+an), .i = ( ~ - S ) w t ,  (5.313, b) 
sin 
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in (5.1) to obtain 

l -a  f 

, (1 -a)  8 = ,u d + ( 1  -a2)iB-sin 28, 

where 
w - w 1  sgnC 

B = (--) 
Y -p 

(5.4~4 h )  

(5.5a, h )  

the dots now signify d/d+, and, here and subsequently, an error factor of 1 + O( 1 -a)  
is implicit (this error factor may be dominated by that of 1 + O(s) already implicit in 
the truncation of the Lagrangian in 93). It follows from (5.4b) that 8 may be 
approximated by 

the substitution of which into ( 5 . 4 ~ )  yields the Landau equation 

0 = ($(l-a));(B+&,~d), (5.6) 

d = 2d[ l -B2-( l+pB)d-$p2d2]  3 d(&;B,p) .  (5.7) 

6. The resonance curve 
The fixed points of (5.7) are given by d = 0 and 

2(1 -B2) 
d =  1 = d*(&,u). 

1 + p B  k ( 1 + 2pB + p2)Z 

If, as we henceforth assume, F > 6 and y > P t  (p > 0) d = 0 is stable/unstable for 
B2 >< 1,  while the upper/lower (d = d*) branch of the resonance curve (6.1) in a 
(B, &)-plane is stable/unstable (i.e. is a locus of stable/unstable fixed points). The 
upper branch joins the null solution at  a supercritical pitchfork bifurcation at  B = 
1,  and has a maximum at B = -& and d = 1 and joins the lower branch at a 
turning point (saddle-node bifurcation) at 

(6.2u, b)  

if and only if ,u > 1. The lower branch then joins the null solution at a subcritical 
pitchfork bifurcation at  B = - 1 .  If ,u < 1 the lower branch disappears (into d < 0) ,  
and the upper branch extends to the bifurcation at  B = - 1, which then is 
supercritical. The limit ,u $0 yields the parabola 

B = -&,y,+,u-l) 3 B,, d = 1 -,up', 

d+ = l-BZ+O(p). 03-31 

The asymptotic (4 f co) value ofB must lie in (B*, 1 )  if ,u > 1 or ( -  1 , l )  ify < 1 and 
presumably is selected through a physical process (see e.g. Manneville 1990, chs 9,lO) 
that is not described by the present formulation. Perhaps the most plausible 
conjecture is that this process maximizes the absolute energy-transfer rate ldl. 
Setting ad/t)B = 0 with d =!= 0), we obtain 

B = --# d, d=24(1-d), (6.4a, b)  

which intersects d = d+ at the maximum. The corresponding r.m.s. value of 
the free-surface displacement is given by (1.4). 

t It follows from (A 7) and (A 8) that y > P for B - - S  = O(S3) if kd % 1, but I have not proved that 
this is so for all kd. Fifth-order (in amplitude) terms may have to be included in the Landau 
equation if y - P  is small. 



On Faraday waves 679 

Milner (1991) assumes that B is selected by the requirement that the 'Lyapunov 
functional ' (cf. Appendix E)  

V(A,B) = - A(A,B)dA (6.5) 1 
of the amplitude A = di (in the present notation) have the deepest possible 
minimum. Substituting 

into (6.5) and invoking aV/ClB = 0 and A = a?$, we obtain 

A = ~ [ i  - B ~ - ( I  + p ~ ) ~ 2 - w ~ 4 ]  (6.6) 

(6.7a, b )  

This lies to the right of the maximum; however, it coincides with the maximum 
of the parabola (6.3) if ,u < 1 ,  and yields 0.94 < d < 1 for 1 > p > 0. 

I am indebted to A. B. Ezerskii, H. Levine, C. M. Surko and W. R. Young for 
helpful discussions and to Q .  Zou for the numerical results. This work was supported 
in part by the Division of Mathematical Sciences/Applied Mathematics program of 
the National Science Foundation, NSF Grant DMS 89-08297, and by the DARPA 
Univ. Res. Init. under Appl. and Comp. Math. Program Contract N00014-86-K-0758 
administered by the Office of Naval Research. 

Appendix A. Dissipation function (Icd $= 1) 
If k( v/w)i  < 1 and boundary-layer damping is neglected (which requires kd 4 1 and 

an uncontaminated free surfacet) the rotational component of the flow is uniformly 
small compared with the irrotational component. The dissipation function then may 
be approximated by (Lamb 1932, §329(7), divided by pX) 

F = v8- l  Jk& ( $ ~ , + $ ~ , + ~ , " , + 2 ~ ~ , + 2 $ ~ , + 2 $ ~ , ) d z ,  (A 1 )  

where v is the kinematic viscosity, 4 is the velocity potential, and x = O  at the 
ambient free surface. Invoking Vzq5 = 0 and led B 1 (so that an = l /kn) ,  we pose 

9 = $n( t )  $n(x)e"' (A 2) 

as the complement of (2.1). The $n may be calculated as in Miles (1976, $2) and are 

C1= -K$:> +iC:,n[(kn/k)2 +!i(kn/k)31, (A 3 b )  
in the present approximation. 

Helmholtz equation (2.2) for $, yields the quartic truncation 
Substituting (A 2) into (A 1) and simplifying the result with the aid of the 

F = 2Vq5rn dn([kk '?a $m $n + k m  kn  V m  + v$n + $mzy +mzy- $mxx $nyyI 

x [ ( 'm+'m)- l+r , ; . z+! i (~m+kn)r jr l ; .~; . zI ) ,  (A41 
t This condition excludes water except under rather special circumstances, but it appears to be 

a good approximation for the n-butyl alcohol used by Tufillaro et al. (1989). 
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which, through (A 3) and (2.4) and (2.5) for the $,, reduces to 

F = 2 u k ~ ~ ~ [ 1 + ~ k ~ , + k Q , + ( ~ + t / 2 ) k 2 ~ ~ ]  
- '$i[($1/2-2) '$2 + '$41 + 1/24; + 2'$:}, (A 5 )  

for the square pattern. Substituting qn from (3 .3a)  and (3.7) into (A 5 ) ,  averaging 
over wt ,  and comparing the result with (4.6b), we obtain 

and 
8 = 2vk2/o (A 6 4  

rp = y + 2/2 +$.;I + q +3322/2 -45) a;i-p;1+ (1742 - 24) a;,+ 2a;2. 

(A 6b)  

Invoking kd % 1, reversing the sign of u in (3.13) to obtain 6, and combining the 
result with (A 6 b )  in (4.10b), we obtain 

716 = 3 +i2/2+@a+&T1 + (51/2- 7 )  -@2i1 + (171/2-24) Qi2+ 2Qia. 
(A 7) 

(A 8) 

The corresponding approximation to P, (3.14), is 

P/e = - (3-242)  ( K ,  a,)-'+ ( K ~ Q ~ ) - ~ .  

Appendix B. Rolls 
The normal modes for one-dimensional Faraday waves, determined as in $2, are 

$1 = 2/2~0skx ( E l  = k), $, = 1/2co~2kx (k, = 2k). (B la, b)  

Proceeding as in $3 ,  we obtain the average Lagrangian in the form (3.10) and (3.11) 
with 

and 

c = :+a( 1 + T2)' K-l-6(3 - y2)' Q-' 

P = $(3 - T') (1 + P)  (~a)- l ,  
(B 2) 

(B 3 )  

where T E tanh kd. (B 4a-d) 
R2 Q = 1 + T 2 - ~ ,  u=- 1 + 4 P  

K=- 
- 1 + R 2 '  1 +P' 

The corresponding dissipation function, calculated through (A 3 )  and (A 4), is 

(B 5 )  

r/& = -i+2K-1-3a-1+4a-2, (B 6 )  

(B 7) 

given by (for Ed % 1)  

F = 2v"W -Bk2q:)+2/2~4, (4 ,y , -~r ,~ , )+24~I ,  

which leads to (A 6 a )  for 6, 

and y /6  = - 1 + K-1- ga-1+ 452-2 + ;a. 

Appendix C. Comparison with Ezerskii et al. (1986) 

we obtain 
Letting a+ = a- = b+ = b- = a in E(2) (E(2) stands for Ezerskii et al. equation (2)), 

6 = 2 Re (a e-id) (cos Ex + cos ky), (C 1 )  
which may be equated to rl 
obtain 

in (2.1)' with yl and 

a+ = a- = b, = b- = a = ekl(p+iq)  

given by ( 3 . 3 ~ )  and (2.4), to 

(C 2) 
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in the present notation. Substituting (C 2) into either E(3a) or E(3b), setting y = Sw 
therein, neglecting spatial modulation except insofar as it implies the detuning 
w-wk ,  and introducing T = a d  (3.3b), we obtain 

(a, + 01) ( p  + ip) = i(p - iq) + i[p+ C(p2 + a 2 ) ]  (p + ip), 

G = ( P + ~ R + S + T ‘ ) ( U ~ ~ ) - ~  = 1.38, 

(C 3) 

(C 4) 

where a = S/s, /3 = (w--oL) / (ew)  (cf. (3.12)), 

and F ,R,S ,  T are the coefficients given just below E(3b). (C 3) is equivalent to (5.1) 
except for the numerical value of C (1.38 ws. 1.89 in the limit Icd,lcZ,? 00)  and the 
neglect of third-order damping and parametric forcing. 

Appendix D. Comparison with Milner (1991) 
Milner assumes lcd,lcZ, % 1 and expands the free-surface displacement for the 

primary mode in plane waves according to (in the present notation with spatial 
modulation suppressed) 

where the summation is over a set of unit wave vectors and their opposites, 
k ,  = kj ,  that form an equiangular star for j = 1, . . . ,N,  and C.C. is the complex- 
conjugate of that sum. A regular pattern is obtained by choosing equal amplitudes, 
aj = a, with N = 1,  2 or 3, respectively, for rolls, squares or hexagons. Equating the 
spatial mean squares of (D 1) and the primary component of (2.1) and invoking 
lcd + 1 (so 1 = 2eh-l) and (3.3), we obtain 

7 = aj(7)exp(ikj.x-iwt)+c.c., (D 1) 

a = (SN)-:Z(p+ip) = (e/2N)ik-’(p+iq). (D 2 )  

Milner’s evolution equation (22), after letting aj = a, J’ = -4a0 w2 ( ~ C O S  2wt is the 
imposed acceleration) and y(O) = So, and suppressing the spatial modulation, reduces 
to 

(€a,+ S )  a-  iea* + (f- iF) lc21a12 a = 0, (D 3) 

wherein a* is the complex-conjugate of a and 

(which are independent of j by virtue of symmetry). Substituting a from (D 2) into 
(D 3) and comparing the result with (5.1) after setting ,8 = P = 0 therein (since 
Milner neglects resonant offset and parametric excitation of the secondary modes in 
his (22)), we obtain 

( y ,  C)  = (.2N)-l (F, F). (D 5) 

Milner’s (A 1, 2) yield = 23/2 and 5! = i(25- 4 2 )  = 11.79 for N = 1 and 2, 
respectively, which compare with 2C = 17/4 and 4C = a(33-242) = 7.54 from the 
limiting (k? 00)  values of (B 2) and (3.13). He gives (p. 89) r/vlc4 = (6,1.93) for 
N = ( I ,  Z ) ,  which (since S = 2vk2/w) imply F/S = (3,0.97) and y/S = (:,0.24) and 
compare with y/S = (21/8,6.04) from the limiting values of (B 6), (A 7).  The 
corresponding values of P / 6  are (-a, -0.23). 

Milner gives few details of his derivations, and I have been unable to determine 
just how and where our analytical results differ. However, I do not agree with his 
equation (20) for ‘the Hamiltonian implied by the energy equation,’ which he 
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implicitly equates to the mean energy ( E )  (in the present notation). There appears 
to be a dimensional error in his definition ‘ h,!; = - Z k4T# ’ (Z is the surface tension), 
but if T# is replaced by T # / ( k 2 w ) ,  the assumption aj = a, the approximation 
o2 M Z k 3 ,  and (D 4 b )  reduce Milner’s (20) to 

( E )  = uv[ (2w2/k )  lal2 - Fo2kla14] (D 6 4  

(D 6b) = +ao W 2 P [ € - l ( p z  + 4 2 )  - ( F / 4 N )  (p2 + q”)”], 

where (D 6b) follows from (D 6a) through (D 2) and 6 s ka,. This result should be 
equal to (4.5b) ; in fact, the quadratic terms are equal (for o = q), but the coefficients 
of a , ~ ~ Z ~ ( p ~ + q ~ ) ~  are -(p/W) = -+C (from (D 5 ) )  and 46, respectively. 

Appendix E. Liapunov functionals 
A Liapunov functional 2 ( A )  for the evolution equation 

A = F ( A )  (E 1) 

in some neighbourhood of a fixed point A = A ,  must satisfy (Manneville 1990, pp. 

L?(A,) = 0, S ( A  + A , )  > 0, d-Y/dt d 0. (E 2a-C) 
29Q 

The functional 2 * ( A )  = -Î  P ( A )  dA 
A .  

manifestly satisfies (E 2a, c ) ,  but whether it satisfies (E 2 b )  depends on both F ( A )  
and A, .  It is worth emphasizing that 2* is not unique; in particular, the 
transformation A = &, h > 0, yields a one-parameter family 2*(A; A ) .  

Milner’s functional for (6.6) is (in his approximation but in the present notation) 

v =  %(A)  = ~ 2 [ - ( ( 1 - ~ 2 ) + ~ ( 1 + ~ ~ ) ~ 2 + 0 ( ~ 2 ~ 4 ) 1 .  

A’ = d+ = (1 +,&)-’ (1 -B2) + O(p2) ,  

(E 4) 

(E 5 )  

The corresponding approximation to the Faraday-wave fixed point is given by 

and > 0 in B2 < 1 (the domain of interest for Faraday waves) if and only if 
A 2  > 2d+. It follows that V is not a proper Liapunov functional for the Faraday-wave 
fixed point. 

A Liapunov functional for the evolution equation (5.7) and the fixed point d+ is 
given by 

2+(d) = - ( l - -B2)(dZ-d2 +) +:( 1 +pB) (d3 - d!) +3p2(d4 - d4 + ) (E 6a) 

(E 6 b )  
= & 2 ( d  - d + ) 2  [id+(&+ - d-) + $(2d+ - d-) (d - d+) + g( d - d + ) 2 ] ,  

where d+ are given by (6.1). It can be shown that 0 < ,u < 1 and B2 < 1 are sufficient 
conditions for Y+(d) > 0, and, hence for the asymptotic stability of d = d+ (subject 
to the a priori neglect of spatial modulation), as also may be inferred from a linear 
stability analysis of (5.7). 
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